class: center, middle, inverse, title-slide # Intro to Statistics ## Cohen Chapter 1
.small[EDUC/PSY 6600] --- background-image: url(figures/fig_scale_variable.png) background-position: 50% 80% background-size: 600px # Scale vs. Variable --- # Scale vs. Variable .pull-left[ ## MEASUREMENT SCALE .large[ - .coral[Nominal] = named groupings, no meaningful order - .dcoral[Ordinal] = groupings that do have natural order - .nicegreen[Interval] = precise units that are equally spaced - .bluer[Ratio] = interval + true zero point ]] .pull-right[ ## VARIABLE TYPE .large[ - .coral[Categorical or Discrete] = finite, countable number of levels, no intermediate values possible - .nicegreen[Numeric or Continuous] = infinite intermediate values are possible, at least in theory ] *NOTE: due to limits on measurement precision, observed data may be discrete, even though the underlying construct is continuous* ] --- ## Ordinal, Interval, Ratio - .dcoral[Ordinal] = groupings that do have natural order - .nicegreen[Interval] = precise units that are equally spaced - .bluer[Ratio] = interval + true zero point .pull-left[ <img src="figures/textbook_fig_1.1.PNG" width="1205" /> ] .pull-right[ <img src="figures/textbook_fig_1.2.PNG" width="1161" /> ] --- ## Discrete vs. Continuous - .coral[Categorical or Discrete] = finite, countable number of levels, no intermediate values possible - .nicegreen[Numeric or Continuous] = infinite intermediate values are possible, at least in theory .pull-left[ <img src="figures/textbook_fig_1.3.PNG" width="1369" /> ] *NOTE: due to limits on measurement precision, observed data may be discrete, even though the underlying construct is continuous* --- ## .coral[Scale Examples] .pull-left[ ### Temperature * **Nominal** + Comfortable vs Uncomfortable * **Ordinal** + Ice, Chilly, Comfy, Warm, Hates * **Interval** + Celsius (C) + Fahrenheit (F) * **Ratio** + Kelvin (K) ] -- .pull-right[ ### Depression * **Nominal** + Early onset, Late onset, Chronic * **Ordinal** + None, mild, moderate, severe * **Interval-Ratio'ish** + Beck Depression Inventory, average of 21 Likert items each on a scale of 0-3 ] --- background-image: url(figures/fig_obs_exp.jpg) background-position: 50% 90% background-size: 900px # Observational vs. Experimental --- # Population vs. Sample **Parameter** * applies to the entire population **Statistic** * calculated from a subset or sample --- # Parametric vs. Non-parametric Statistics **Parametric** * Based on a specific distribution (i.e. normal) * Interval, ratio scales * can be mokre powerful * accuracy influenced by outliers **Non-parametric** * ordinal or norminal scores * NOT base on any specific distribution * no assumption makes it more flexible --- # Rounding Numbers ### Rules .large[ - If you want to round to N decimal places, look at the digit in the `\(N + 1\)` placeā¦ - If it is LESS than 5 -> do not change the digit in the Nth place - If it is MORE than 5 -> increase the digit in the Nth place by 1 - If it is EQUAL to 5 AND there are no non-zero digits to the right, -> increase the digit in the Nth place by 1 ONLY IF the Nth digit is ODD (do not change it if it is EVEN) In all cases, the last step is to drop the digit in the `\(N+1\)` place and other digits to the right ] --- ## .coral[Rounding Examples] Round to **two** decimal places: 1. 65.302 -- = 65.30 -- 2. 65.3 -- = 65.30 -- 3. 8/3 = 2.66666666... -- = 2.67 -- 4. 0.4252 -- = 0.43 -- 5. 0.4258 -- = 0.43 -- 6. 0.425 -- = 0.42 -- 7. 0.435 -- = 0.44 --- background-image: url(figures/fig_summation_notation.png) background-position: 50% 50% background-size: 500px # Summation Notation --- ## .coral[Summation Example 1] .nicegreen[ $$ `\begin{matrix} x_1 = 5 & x_2 = 4 & x_3 = 3 & x_4 = 2 & x_5 = 1 \\ y_1 = 10 & y_2 = 20 & y_3 = 30 & y_4 = 40 & y_5 = 50 \end{matrix}` $$ ] .coral[ $$ \frac{1}{5}\sum_{i = 1}^5 x_i \\ $$ ] -- $$ \frac{1}{5} \times (x_1 + x_2 + x_3 + x_4 + x_5) \\ $$ -- $$ \frac{1}{5} \times (5 + 4 + 3 + 2 + 1) \\ $$ -- $$ \frac{1}{5} \times 15 \\ $$ -- $$ 3 $$ --- ## .coral[Summation Example 2] .nicegreen[ $$ `\begin{matrix} x_1 = 5 & x_2 = 4 & x_3 = 3 & x_4 = 2 & x_5 = 1 \\ y_1 = 10 & y_2 = 20 & y_3 = 30 & y_4 = 40 & y_5 = 50 \end{matrix}` $$ ] .coral[ $$ \sum_{i = 2}^5 (y_i - x_i) $$ ] -- $$ (y_2 - x_2) + ( y_3 - x_3) + ( y_4 - x_4) + ( y_5 - x_5) $$ -- $$ (20-4)+(30-3)+(40-2)+(50-1) $$ -- $$ 16+27+38+49 $$ -- $$ 130 $$ --- ## .coral[Summation Example 3] .nicegreen[ $$ `\begin{matrix} x_1 = 5 & x_2 = 4 & x_3 = 3 & x_4 = 2 & x_5 = 1 \\ y_1 = 10 & y_2 = 20 & y_3 = 30 & y_4 = 40 & y_5 = 50 \end{matrix}` $$ ] .coral[ $$ \sum_{i = 1}^2 (x_i \times y_i) $$ ] -- $$ (x_1 \times y_1 ) + ( x_2 \times y_2 ) $$ -- $$ (5\times10)+(4\times20) $$ -- $$ 50+80 $$ -- $$ 130 $$ --- ## .coral[Summation Example 4] .nicegreen[ $$ `\begin{matrix} x_1 = 5 & x_2 = 4 & x_3 = 3 & x_4 = 2 & x_5 = 1 \\ y_1 = 10 & y_2 = 20 & y_3 = 30 & y_4 = 40 & y_5 = 50 \end{matrix}` $$ ] .coral[ $$ \sum_{i = 1}^2 (x_i + y_i)^2 $$ ] -- $$ (x_1 + y_1 )^2 + ( x_2 + y_2 )^2 $$ -- $$ (5+10)^2+(4+20)^2 $$ -- $$ 15^2+24^2 $$ -- $$ 225 + 576 $$ -- $$ 801 $$ --- # Summation Rules .pull-left[ #### Number 1 $$ \sum (X_i + Y_i) = \sum X_i + \sum Y_i $$ $$ \sum (X_i - Y_i) = \sum X_i - \sum Y_i $$ #### Number 2 $$ \sum_{i=1}^n C = nC $$ #### Number 3 $$ \sum CX_i = C \sum X_i $$ ] -- .pull-right[ #### Number 4 $$ \sum (X_i \times Y_i) \neq \sum X_i \times \sum Y_i $$ ] ] --- class: inverse, center, middle # Questions? --- class: inverse, center, middle # Next Topics ### More Data Manipulation ### Understanding Data via Figures