9 Logistic Regression - Ex: Maternal Risk Factor for Low Birth Weight Delivery
library(tidyverse)
library(haven) # read in SPSS dataset
library(furniture) # nice table1() descriptives
library(stargazer) # display nice tables: summary & regression
library(texreg) # Convert Regression Output to LaTeX or HTML Tables
library(texreghelpr) #
library(psych) # contains some useful functions, like headTail
library(car) # Companion to Applied Regression
library(sjPlot) # Quick plots and tables for models
library(pscl) # psudo R-squared function
library(glue) # Interpreted String Literals
library(interactions) # interaction plots
library(sjPlot) # various plots
library(performance) # r-squared values
9.1 Background
More complex example demonstrating modeling decisions
Another set of data from a study investigating predictors of low birth weight
id
infant’s unique identification number
Dependent variable (DV) or outcome
low
Low birth weight (outcome)- 0 = birth weight >2500 g (normal)
- 1 = birth weight < 2500 g (low))
bwt
actual infant birth weight in grams (ignore for now)
Independent variables (IV) or predictors
age
Age of mother, in yearslwt
Mother’s weight at last menstrual period, in poundsrace
Race: 1 = White, 2 = Black, 3 = Othersmoke
Smoking status during pregnancy:1 = Yes, 0 = Noptl
History of premature labor: 0 = None, 1 = One, 2 = two, 3 = threeht
History of hypertension: 1 = Yes, 0 = Noui
Uterine irritability: 1 = Yes, 0 = Noftv
Number of physician visits in 1st trimester: 0 = None, 1 = One, … 6 = six
9.1.1 Raw Dataset
The data is saved in a text file (.txt
) without any labels.
lowbwt_raw <- read.table("https://raw.githubusercontent.com/CEHS-research/data/master/Regression/lowbwt.txt",
header = TRUE,
sep = "",
na.strings = "NA",
dec = ".",
strip.white = TRUE)
tibble::glimpse(lowbwt_raw)
Rows: 189
Columns: 11
$ id <int> 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, ...
$ low <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18, 1...
$ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, 95...
$ race <int> 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3, 1, 3...
$ smoke <int> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0...
$ ptl <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0...
$ ht <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0...
$ ui <int> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0...
$ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 2...
$ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665, 2...
9.1.2 Declare Factors
lowbwt_clean <- lowbwt_raw %>%
dplyr::mutate(id = factor(id)) %>%
dplyr::mutate(low = low %>%
factor() %>%
forcats::fct_recode("birth weight >2500 g (normal)" = "0",
"birth weight < 2500 g (low)" = "1")) %>%
dplyr::mutate(race = race %>%
factor() %>%
forcats::fct_recode("White" = "1",
"Black" = "2",
"Other" = "3")) %>%
dplyr::mutate(ptl_any = as.numeric(ptl > 0)) %>% # collapse into 0 = none vs. 1 = at least one
dplyr::mutate(ptl = factor(ptl)) %>% # declare the number of pre-term labors to be a factor: 0, 1, 2, 3
dplyr::mutate_at(vars(smoke, ht, ui, ptl_any), # declare all there variables to be factors with the same two levels
factor,
levels = 0:1,
labels = c("No", "Yes"))
Display the structure of the ‘clean’ version of the dataset
Rows: 189
Columns: 12
$ id <fct> 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100...
$ low <fct> birth weight >2500 g (normal), birth weight >2500 g (normal...
$ age <int> 19, 33, 20, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 30, 18,...
$ lwt <int> 182, 155, 105, 108, 107, 124, 118, 103, 123, 113, 95, 150, ...
$ race <fct> Black, Other, White, White, White, Other, White, Other, Whi...
$ smoke <fct> No, No, Yes, Yes, Yes, No, No, No, Yes, Yes, No, No, No, No...
$ ptl <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,...
$ ht <fct> No, No, No, No, No, No, No, No, No, No, No, No, Yes, No, No...
$ ui <fct> Yes, No, No, Yes, Yes, No, No, No, No, No, No, No, No, Yes,...
$ ftv <int> 0, 3, 1, 2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1,...
$ bwt <int> 2523, 2551, 2557, 2594, 2600, 2622, 2637, 2637, 2663, 2665,...
$ ptl_any <fct> No, No, No, No, No, No, No, No, No, No, No, No, No, Yes, No...
# A tibble: 189 x 12
id low age lwt race smoke ptl ht ui ftv bwt ptl_any
<fct> <fct> <int> <int> <fct> <fct> <fct> <fct> <fct> <int> <int> <fct>
1 85 birth we~ 19 182 Black No 0 No Yes 0 2523 No
2 86 birth we~ 33 155 Other No 0 No No 3 2551 No
3 87 birth we~ 20 105 White Yes 0 No No 1 2557 No
4 88 birth we~ 21 108 White Yes 0 No Yes 2 2594 No
5 89 birth we~ 18 107 White Yes 0 No Yes 0 2600 No
6 91 birth we~ 21 124 Other No 0 No No 0 2622 No
7 92 birth we~ 22 118 White No 0 No No 1 2637 No
8 93 birth we~ 17 103 Other No 0 No No 1 2637 No
9 94 birth we~ 29 123 White Yes 0 No No 1 2663 No
10 95 birth we~ 26 113 White Yes 0 No No 0 2665 No
# ... with 179 more rows
9.2 Exploratory Data Analysis
lowbwt_clean %>%
furniture::table1("Age, years" = age,
"Weight, pounds" = lwt,
"Race" = race,
"Smoking During pregnancy" = smoke,
"History of Premature Labor, any" = ptl_any,
"History of Premature Labor, number" = ptl,
"History of Hypertension" = ht,
"Uterince Irritability" = ui,
"1st Tri Dr Visits" = ftv,
splitby = ~ low,
test = TRUE,
output = "markdown")
birth weight >2500 g (normal) | birth weight < 2500 g (low) | P-Value | |
---|---|---|---|
n = 130 | n = 59 | ||
Age, years | 0.103 | ||
23.7 (5.6) | 22.3 (4.5) | ||
Weight, pounds | 0.02 | ||
133.3 (31.7) | 122.1 (26.6) | ||
Race | 0.082 | ||
White | 73 (56.2%) | 23 (39%) | |
Black | 15 (11.5%) | 11 (18.6%) | |
Other | 42 (32.3%) | 25 (42.4%) | |
Smoking During pregnancy | 0.04 | ||
No | 86 (66.2%) | 29 (49.2%) | |
Yes | 44 (33.8%) | 30 (50.8%) | |
History of Premature Labor, any | <.001 | ||
No | 118 (90.8%) | 41 (69.5%) | |
Yes | 12 (9.2%) | 18 (30.5%) | |
History of Premature Labor, number | <.001 | ||
0 | 118 (90.8%) | 41 (69.5%) | |
1 | 8 (6.2%) | 16 (27.1%) | |
2 | 3 (2.3%) | 2 (3.4%) | |
3 | 1 (0.8%) | 0 (0%) | |
History of Hypertension | 0.076 | ||
No | 125 (96.2%) | 52 (88.1%) | |
Yes | 5 (3.8%) | 7 (11.9%) | |
Uterince Irritability | 0.035 | ||
No | 116 (89.2%) | 45 (76.3%) | |
Yes | 14 (10.8%) | 14 (23.7%) | |
1st Tri Dr Visits | 0.389 | ||
0.8 (1.1) | 0.7 (1.0) |
9.3 Logistic Regression - Simple, unadjusted models
low1.age <- glm(low ~ age, family = binomial(link = "logit"), data = lowbwt_clean)
low1.lwt <- glm(low ~ lwt, family = binomial(link = "logit"), data = lowbwt_clean)
low1.race <- glm(low ~ race, family = binomial(link = "logit"), data = lowbwt_clean)
low1.smoke <- glm(low ~ smoke, family = binomial(link = "logit"), data = lowbwt_clean)
low1.ptl <- glm(low ~ ptl_any, family = binomial(link = "logit"), data = lowbwt_clean)
low1.ht <- glm(low ~ ht, family = binomial(link = "logit"), data = lowbwt_clean)
low1.ui <- glm(low ~ ui, family = binomial(link = "logit"), data = lowbwt_clean)
low1.ftv <- glm(low ~ ftv, family = binomial(link = "logit"), data = lowbwt_clean)
Note: the parameter estimates here are for the LOGIT scale, not the odds ration (OR) or even the probability.
texreg::knitreg(list(low1.age, low1.lwt, low1.race, low1.smoke),
custom.model.names = c("Age", "Weight", "Race", "Smoker"),
caption = "Simple, Unadjusted Logistic Regression: Models 1-4",
caption.above = TRUE,
digits = 3)
Age | Weight | Race | Smoker | |
---|---|---|---|---|
(Intercept) | 0.385 | 0.998 | -1.155*** | -1.087*** |
(0.732) | (0.785) | (0.239) | (0.215) | |
age | -0.051 | |||
(0.032) | ||||
lwt | -0.014* | |||
(0.006) | ||||
raceBlack | 0.845 | |||
(0.463) | ||||
raceOther | 0.636 | |||
(0.348) | ||||
smokeYes | 0.704* | |||
(0.320) | ||||
AIC | 235.912 | 232.691 | 235.662 | 233.805 |
BIC | 242.395 | 239.174 | 245.387 | 240.288 |
Log Likelihood | -115.956 | -114.345 | -114.831 | -114.902 |
Deviance | 231.912 | 228.691 | 229.662 | 229.805 |
Num. obs. | 189 | 189 | 189 | 189 |
p < 0.001; p < 0.01; p < 0.05 |
texreg::knitreg(list(low1.ptl, low1.ht, low1.ui, low1.ftv),
custom.model.names = c("Pre-Labor", "Hypertension", "Uterine", "Visits"),
caption = "Simple, Unadjusted Logistic Regression: Models 5-8",
caption.above = TRUE,
digits = 3)
Pre-Labor | Hypertension | Uterine | Visits | |
---|---|---|---|---|
(Intercept) | -1.057*** | -0.877*** | -0.947*** | -0.687*** |
(0.181) | (0.165) | (0.176) | (0.195) | |
ptl_anyYes | 1.463*** | |||
(0.414) | ||||
htYes | 1.214* | |||
(0.608) | ||||
uiYes | 0.947* | |||
(0.417) | ||||
ftv | -0.135 | |||
(0.157) | ||||
AIC | 225.898 | 234.650 | 233.596 | 237.899 |
BIC | 232.381 | 241.133 | 240.079 | 244.382 |
Log Likelihood | -110.949 | -115.325 | -114.798 | -116.949 |
Deviance | 221.898 | 230.650 | 229.596 | 233.899 |
Num. obs. | 189 | 189 | 189 | 189 |
p < 0.001; p < 0.01; p < 0.05 |
9.4 Logistic Regression - Multivariate, with Main Effects Only
Main-effects multiple logistic regression model
low1_1 <- glm(low ~ age + lwt + race + smoke + ptl_any + ht + ui,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_1)
Call:
glm(formula = low ~ age + lwt + race + smoke + ptl_any + ht +
ui, family = binomial(link = "logit"), data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6459 -0.7992 -0.5103 0.9388 2.2018
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.63691 1.23028 0.518 0.60467
age -0.03775 0.03781 -0.998 0.31808
lwt -0.01491 0.00704 -2.118 0.03419 *
raceBlack 1.21274 0.53248 2.278 0.02275 *
raceOther 0.80412 0.44843 1.793 0.07294 .
smokeYes 0.84640 0.40806 2.074 0.03806 *
ptl_anyYes 1.22175 0.46301 2.639 0.00832 **
htYes 1.83869 0.70324 2.615 0.00893 **
uiYes 0.71113 0.46311 1.536 0.12465
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 196.83 on 180 degrees of freedom
AIC: 214.83
Number of Fisher Scoring iterations: 4
9.5 Logistic Regression - Multivariate, with Interactions
Before removing non-significant main effects, test plausible interactions
Try interactions between age and lwt, age and smoke, lwt and smoke, 1 at a time
9.5.1 Age and Weight
low1_2 <- glm(low ~ age + lwt + race + smoke + ptl_any + ht + ui + age:lwt,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_2)
Call:
glm(formula = low ~ age + lwt + race + smoke + ptl_any + ht +
ui + age:lwt, family = binomial(link = "logit"), data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6426 -0.8004 -0.5163 0.9400 2.1989
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.1396293 4.0443041 0.282 0.77811
age -0.0597273 0.1724339 -0.346 0.72906
lwt -0.0188377 0.0309225 -0.609 0.54240
raceBlack 1.2071359 0.5341716 2.260 0.02383 *
raceOther 0.7977750 0.4505381 1.771 0.07661 .
smokeYes 0.8433655 0.4083953 2.065 0.03892 *
ptl_anyYes 1.2260463 0.4642795 2.641 0.00827 **
htYes 1.8389418 0.7034162 2.614 0.00894 **
uiYes 0.7142688 0.4642468 1.539 0.12391
age:lwt 0.0001718 0.0013146 0.131 0.89600
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 196.82 on 179 degrees of freedom
AIC: 216.82
Number of Fisher Scoring iterations: 5
9.5.1.1 Compare Model Fits vs. Likelihood Ratio Test
# A tibble: 2 x 5
`Resid. Df` `Resid. Dev` Df Deviance `Pr(>Chi)`
<dbl> <dbl> <dbl> <dbl> <dbl>
1 180 197. NA NA NA
2 179 197. 1 0.0170 0.896
9.5.1.2 Type II Analysis of Deviance Table
# A tibble: 8 x 3
`LR Chisq` Df `Pr(>Chisq)`
<dbl> <dbl> <dbl>
1 1.02 1 0.313
2 5.00 1 0.0254
3 6.27 2 0.0436
4 4.38 1 0.0364
5 7.13 1 0.00758
6 7.18 1 0.00738
7 2.33 1 0.127
8 0.0170 1 0.896
9.5.2 Age and Smoking
low1_3 <- glm(low ~ age + lwt + race + smoke + ptl_any + ht + ui + age:smoke,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_3)
Call:
glm(formula = low ~ age + lwt + race + smoke + ptl_any + ht +
ui + age:smoke, family = binomial(link = "logit"), data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7020 -0.8016 -0.4970 0.9055 2.2124
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.311029 1.483078 0.884 0.37670
age -0.068293 0.053865 -1.268 0.20485
lwt -0.014701 0.007001 -2.100 0.03575 *
raceBlack 1.126482 0.543684 2.072 0.03827 *
raceOther 0.768241 0.451199 1.703 0.08863 .
smokeYes -0.601286 1.782234 -0.337 0.73583
ptl_anyYes 1.197295 0.460992 2.597 0.00940 **
htYes 1.860851 0.705311 2.638 0.00833 **
uiYes 0.783999 0.472451 1.659 0.09703 .
age:smokeYes 0.063744 0.076634 0.832 0.40552
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 196.14 on 179 degrees of freedom
AIC: 216.14
Number of Fisher Scoring iterations: 5
9.5.2.1 Compare Model Fits vs. Likelihood Ratio Test
# A tibble: 2 x 5
`Resid. Df` `Resid. Dev` Df Deviance `Pr(>Chi)`
<dbl> <dbl> <dbl> <dbl> <dbl>
1 180 197. NA NA NA
2 179 196. 1 0.699 0.403
# A tibble: 2 x 11
Model Type AIC BIC R2_Tjur RMSE SCORE_LOG SCORE_SPHERICAL PCP BF
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 low1~ glm 216. 249. 0.192 1.02 -102. 0.00749 0.653 0.103
2 low1~ glm 215. 244. 0.190 1.02 -102. 0.00634 0.652 1
# ... with 1 more variable: Performance_Score <dbl>
9.5.3 Weight and Smoking
low1_4 <- glm(low ~ age + lwt + race + smoke + ptl_any + ht + ui + lwt:smoke,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_4)
Call:
glm(formula = low ~ age + lwt + race + smoke + ptl_any + ht +
ui + lwt:smoke, family = binomial(link = "logit"), data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6816 -0.7874 -0.5251 0.8876 2.2365
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.74840 1.59439 1.097 0.27282
age -0.03768 0.03809 -0.989 0.32259
lwt -0.02362 0.01077 -2.193 0.02828 *
raceBlack 1.23110 0.53358 2.307 0.02104 *
raceOther 0.71646 0.45183 1.586 0.11281
smokeYes -1.13566 1.75557 -0.647 0.51770
ptl_anyYes 1.26472 0.46488 2.721 0.00652 **
htYes 1.74326 0.70738 2.464 0.01373 *
uiYes 0.80121 0.47044 1.703 0.08855 .
lwt:smokeYes 0.01555 0.01344 1.157 0.24740
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 195.44 on 179 degrees of freedom
AIC: 215.44
Number of Fisher Scoring iterations: 5
9.6 Logistic Regression - Multivariate, Simplify
No interactions are significant Remove non-significant main effects
9.6.1 Remove the least significant perdictor: ui
low1_5 <- glm(low ~ age + lwt + race + smoke + ptl_any + ht,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_5)
Call:
glm(formula = low ~ age + lwt + race + smoke + ptl_any + ht,
family = binomial(link = "logit"), data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6533 -0.8202 -0.5299 0.9709 2.1982
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.924910 1.202693 0.769 0.44187
age -0.042784 0.037567 -1.139 0.25475
lwt -0.015436 0.007044 -2.191 0.02843 *
raceBlack 1.168452 0.532577 2.194 0.02824 *
raceOther 0.814620 0.442740 1.840 0.06578 .
smokeYes 0.858332 0.404787 2.120 0.03397 *
ptl_anyYes 1.333970 0.457573 2.915 0.00355 **
htYes 1.740511 0.703104 2.475 0.01331 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 199.15 on 181 degrees of freedom
AIC: 215.15
Number of Fisher Scoring iterations: 4
9.7 Logistic Regression - Multivariate, Final Model
Since the mother’s age is theoretically a meaningful variable, it should probably be retained.
Revise so that age is interpreted in 5-year and lwt in 20 lb increments and the intercept has meaning.
low1_6 <- glm(low ~ I((age - 20)/5) + I((lwt - 125)/20) + race + smoke + ptl_any + ht,
family = binomial(link = "logit"),
data = lowbwt_clean)
summary(low1_6)
Call:
glm(formula = low ~ I((age - 20)/5) + I((lwt - 125)/20) + race +
smoke + ptl_any + ht, family = binomial(link = "logit"),
data = lowbwt_clean)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6533 -0.8202 -0.5299 0.9709 2.1982
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8603 0.4092 -4.546 5.48e-06 ***
I((age - 20)/5) -0.2139 0.1878 -1.139 0.25475
I((lwt - 125)/20) -0.3087 0.1409 -2.191 0.02843 *
raceBlack 1.1685 0.5326 2.194 0.02824 *
raceOther 0.8146 0.4427 1.840 0.06578 .
smokeYes 0.8583 0.4048 2.120 0.03397 *
ptl_anyYes 1.3340 0.4576 2.915 0.00355 **
htYes 1.7405 0.7031 2.475 0.01331 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 199.15 on 181 degrees of freedom
AIC: 215.15
Number of Fisher Scoring iterations: 4
9.7.1 Several \(R^2\) measures with the pscl::pR2()
function
fitting null model for pseudo-r2
llh llhNull G2 McFadden r2ML r2CU
-99.5757045 -117.3359981 35.5205871 0.1513627 0.1713353 0.2409463
$R2_Tjur
Tjur's R2
0.1804906
9.7.2 Parameter Estiamtes Table
9.7.2.1 Using texreg::screenreg()
Default: parameters are in terms of the ‘logit’ or log odds ratio
Model 1 | |
---|---|
(Intercept) | -1.860 (0.409)*** |
(age - 20)/5 | -0.214 (0.188) |
(lwt - 125)/20 | -0.309 (0.141)* |
raceBlack | 1.168 (0.533)* |
raceOther | 0.815 (0.443) |
smokeYes | 0.858 (0.405)* |
ptl_anyYes | 1.334 (0.458)** |
htYes | 1.741 (0.703)* |
AIC | 215.151 |
BIC | 241.085 |
Log Likelihood | -99.576 |
Deviance | 199.151 |
Num. obs. | 189 |
p < 0.001; p < 0.01; p < 0.05 |
The texreg
package uses an intermediate function called extract()
to extract information for the model and then put it in the right places in the table. I have writen a function called extract_glm_exp()
that is helpful.
texreg::knitreg(extract_glm_exp(low1_6),
custom.coef.names = c("BL: 125 lb, 20 yr old White Mother",
"Additional 5 years older",
"Additional 20 lbs pre-pregnancy",
"Race: Black vs. White",
"Race: Other vs. White",
"Smoking During pregnancy",
"History of Any Premature Labor",
"History of Hypertension"),
custom.model.names = "OR, Low Birth Weight",
single.row = TRUE,
ci.test = 1)
OR, Low Birth Weight | |
---|---|
BL: 125 lb, 20 yr old White Mother | 0.16 [0.07; 0.33]* |
Additional 5 years older | 0.81 [0.55; 1.16] |
Additional 20 lbs pre-pregnancy | 0.73 [0.55; 0.95]* |
Race: Black vs. White | 3.22 [1.13; 9.31]* |
Race: Other vs. White | 2.26 [0.96; 5.50] |
Smoking During pregnancy | 2.36 [1.08; 5.32]* |
History of Any Premature Labor | 3.80 [1.57; 9.53]* |
History of Hypertension | 5.70 [1.49; 24.76]* |
AIC | 215.15 |
BIC | 241.09 |
Log Likelihood | -99.58 |
Deviance | 199.15 |
Num. obs. | 189 |
* 1 outside the confidence interval. |
texreg::knitreg(list(low1_6,
extract_glm_exp(low1_6,
include.aic = FALSE,
include.bic = FALSE,
include.loglik = FALSE,
include.deviance = FALSE,
include.nobs = FALSE)),
custom.model.names = c("b (SE)",
"OR [95 CI]"),
custom.coef.map = list("(Intercept)" = "BL: 125 lb, 20 yr old White Mother",
"I((age - 20)/5)" = "Additional 5 years older",
"I((lwt - 125)/20)" = "Additional 20 lbs pre-pregnancy",
"raceBlack" = "Race: Black vs. White",
"raceOther" = "Race: Other vs. White",
"smokeYes" = "Smoking During pregnancy",
"ptl_anyYes" = "History of Any Premature Labor",
"htYes" = "History of Hypertension"),
caption = "Maternal Factors effect Low Birthweight of Infant",
caption.above = TRUE,
single.row = TRUE,
ci.test = 1)
b (SE) | OR [95 CI] | |
---|---|---|
BL: 125 lb, 20 yr old White Mother | -1.86 (0.41)*** | 0.16 [0.07; 0.33]* |
Additional 5 years older | -0.21 (0.19) | 0.81 [0.55; 1.16] |
Additional 20 lbs pre-pregnancy | -0.31 (0.14)* | 0.73 [0.55; 0.95]* |
Race: Black vs. White | 1.17 (0.53)* | 3.22 [1.13; 9.31]* |
Race: Other vs. White | 0.81 (0.44) | 2.26 [0.96; 5.50] |
Smoking During pregnancy | 0.86 (0.40)* | 2.36 [1.08; 5.32]* |
History of Any Premature Labor | 1.33 (0.46)** | 3.80 [1.57; 9.53]* |
History of Hypertension | 1.74 (0.70)* | 5.70 [1.49; 24.76]* |
AIC | 215.15 | |
BIC | 241.09 | |
Log Likelihood | -99.58 | |
Deviance | 199.15 | |
Num. obs. | 189 | |
p < 0.001; p < 0.01; p < 0.05 (or Null hypothesis value outside the confidence interval). |
9.7.3 Marginal Model Plot
9.7.3.1 Focus on: Mother’s Age, weight, and race
effects::Effect(focal.predictors = c("age", "lwt", "race"),
mod = low1_6,
xlevels = list(age = c(20, 30, 40),
lwt = seq(from = 80, to = 250, by = 5))) %>%
data.frame() %>%
dplyr::mutate(age_labels = glue("Mother Age: {age}")) %>%
ggplot(aes(x = lwt,
y = fit)) +
geom_line(aes(color = race,
linetype = race),
size = 1) +
theme_bw() +
facet_grid(.~ age_labels) +
labs(title = "Risk of Low Birth Weight",
subtitle = "Illustates risk given mother is a non-smoker, without a history of pre-term labor or hypertension",
x = "Mother's Weight Pre-Pregnancy, pounds",
y = "Predicted Probability\nBaby has Low Birth Weight (< 2500 grams)",
color = "Mother's Race",
linetype = "Mother's Race") +
theme(legend.position = c(1, 1),
legend.justification = c(1.1, 1.1),
legend.background = element_rect(color = "black"),
legend.key.width = unit(2, "cm")) +
scale_linetype_manual(values = c("longdash", "dotted", "solid")) +
scale_color_manual(values = c( "coral2", "dodger blue", "gray50"))
9.7.3.2 Focus on: Mother’s weight and smoking status during pregnancy, as well as history of any per-term labor and hypertension
effects::Effect(focal.predictors = c("lwt", "smoke", "ptl_any", "ht"),
fixed.predictors = list(age = 20),
mod = low1_6,
xlevels = list(lwt = seq(from = 80, to = 250, by = 5))) %>%
data.frame() %>%
dplyr::mutate(smoke = forcats::fct_rev(smoke)) %>%
dplyr::mutate(ptl_any_labels = glue("History of Preterm Labor: {ptl_any}")) %>%
dplyr::mutate(ht_labels = glue("History of Hypertension: {ht}") %>% forcats::fct_rev()) %>%
ggplot(aes(x = lwt,
y = fit)) +
geom_line(aes(color = smoke,
linetype = smoke),
size = 1) +
theme_bw() +
facet_grid(ht_labels ~ ptl_any_labels) +
labs(title = "Risk of Low Birth Weight",
subtitle = "Illustates risk given the mother is 20 years old and white",
x = "Mother's Weight Pre-Pregnancy, pounds",
y = "Predicted Probability\nBaby has Low Birth Weight (< 2500 grams)",
color = "Mother Smoked",
linetype = "Mother Smoked") +
theme(legend.position = c(1, .5),
legend.justification = c(1.1, 1.15),
legend.background = element_rect(color = "black"),
legend.key.width = unit(1.5, "cm")) +
scale_linetype_manual(values = c("longdash", "solid")) +
scale_color_manual(values = c( "coral2", "dodger blue"))